
NASA-CR-196657

DEVELOPMENT OF ITERATIVE TECHNIQUES FOR THE SOLUTION

OF

UNSTEADY COMPRESSIBLE VISCOUS FLOWS

Grant NAG-l-1217

Supplement 2

Final Report

Submitted to

/ _,,'__ ,,_ /__J

NASA Langley Research Center

Hampton, VA 23665

Attn: Dr. Woodrow Whitlow

Chief, Unsteady Aerodynamics Branch

Prepared by

Lakshmi N. Sankar and Duane Hixon

School of Aerospace Engineering

Georgia Institute of Technology, Atlanta, GA 30332

November 1993

(_.;_ A-C_-194o57) jEVELOPMENT OF

IT!_IATIV;_ TECN'_I,_UES FJR TH{

5,2LI..'TIUH .PF U_!STLADY COMPRESSIoLE

VI.,CdUS FI.LJVJS Final Report

(Georr;i a Inst. of Tech.) 14 p

N94-17129

Unclas

G3/34 0193073



SUMMARY

The work done under this project was documented in detail as the Ph.D.

dissertation of Dr. Duane Hixon. It may be recalled that the objectives of the

research project were:

1) Evaluation of the Generalized Minimum Residual method (GMRES) as a

tool for accelerating 2-D and 3-D unsteady flows, and

2) Evaluation of the suitability of the GMRES algorithm for unsteady flows,

computed on parallel computer architectures.

Both these objectives were met.

In addition to the Ph.D. dissertation of Mr. Duane Hixon, the following

three AIAA papers were pulished, under the present work. Two of these papers

also appeared as journal articles.

1. Hixon, R. and Sankar, L. N., " Application of a Generalized Minimum

Residual Method to 2-D Unsteady Flows," AIAA Paper 92-0422; also, AIAA

Journal, Volume 31, No. 10, October 1993, pp 1955-1957.

2. Hixon, R., Tsung, Fu-Lin and Sankar, L. N., "A Comparison of Two

methods for Solving 3-D Unsteady Compressible Viscous Flows," AIAA paper 93-

0537, to appear in AIAA Journal, 1994.

3. Hixon, R. and Sankar, L. N., "Unsteady Compressible Two-Dimensional

Calculations on a MIMD Parallel Supercomputer," AIAA paper 94-0757.

The first two publications as well as a detailed, final report were previously

mailed to the sponsor. The AIAA paper 94-0757 is enclosed here, as an

appendix.



APPENDIX



AIAA 94-0757

Unsteady Compressible 2-D Flow
Calculations on a
MIMD Parallel Supercomputer

Duane Hixon and Lakshmi N. Sankar
School of Aerospace Engineering
Georgia Institute of Technology
Atlanta, GA 30332

32nd Aerospace Sciences
Meeting & Exhibit

January 10-13, 1994 / Reno, NV

For permission to copy or republish, contact the Amedcan Institute of Aeronautics and Astronautics
370 L'Enfant Promenade, S.W., Washington, D.C. 20024



Unsteady Compressible 2-D Flow Calculations on a MIMD Parallel
Supercomputer

Duane Hixon" and Lakshmi N. Sankar"°
School of Aerospace Engineering

Georgia Institute of Technology
Atlanta, GA 30332

ABSTRACT

An existing sequential 2-D Altemating Direction Implicit
(ADI) unsteady compressible viscous flow solver has
been modified to run on an Intel iPSC/860 parallel
supercomputer. Techniques for implementation of
boundary conditions, and the inversion of the implicit
matrix equations are discussed. A Generalized Minimal
Residual method is added to the parallel algorithm and
tested. Results are presented for steady viscous flow
past a NACA 0012 airfoil at 13.4 degree angle of
attack, and for a NACA 64-A010 airfoil performing a
sinusoidal plunging motion under transonic flight
conditions. It concluded that implicit time marching
algorithms may be efficiently implemented on parallel
message passing architectures.

INTRODUCTION

During the past two decades, there has been
significant progress in numerical simulation of
unsteady compressible viscous flows. At present, a
variety of solution techniques exist such as the
transonic small disturbance analyses (TSD) 1,2,3
transonic full potential equation based methods 40s,e,
unsteady Euier solvers7,e,and unsteady Navier-Stokes
solvers °,1°,11,12. This progress has been driven by
developments in three areas: (1) Improved numerical
algorithms, (2) Automation of body-fitted grid
generation schemes, and (3) Advanced computer
architectures with vector processing and parallel
processing features.

Despite these advances, numerical simulation of
unsteady viscous flows still remains a computationally
intensive problem even in two dimensions. For

* Postdoctoral Researcher, Presently at NASA Lewis
Research Center, Member AIAA.

" Professor, School of Aerospace Engineering.
Senior Member AIAA.

Copyright © 1993 by Ray Hixon and L.N. Sankar.
Published by the American Institute of Aeronautics
and Astronautics, Inc. with permission.

example, unsteady 3-D Navier-Stokes simulations of a
helicopter rotor blade in forward flight may require over
30,000 time steps for a full revolution of the rotor1°. In
other unsteady flows, such as the high angle of attack
flow past fighter configurations, a systematic parametric
study of the flow is currently not practical due to the
very large CPU time necessary for such simulations13
Thus, it is clear that significant improvements to the
existing algorithms, and dramatic improvements in
computer architectures, will be needed before
unsteady two and three dimensional viscous flow
analyses become practical day-to-day engineering
tools.

One numerical scheme that has been of recent
interest is the Generalized Minimal RESidual (GMRES)
method originally proposed by Saad and Schultz_4.
This procedure uses a conjugate gradient method to
accelerate the convergence of existing flow solvers.
GMRES was added to existing steady flow solvers by
Wigton, Yu, and Young Is, and has been used on many
different types of solvers ls'21. Saad has also used a
similar Krylov subspace projection method on a steady,
incompressible Navier-Stokes problem and an
unsteady one-dimensional wave propagation
equation The present researchers have successfully
used the GMRES scheme to accelerate 2-D and 3-D
unsteady viscous flow computations on vector
supercomputers 23.24.

In the area of improved computer architectures,
emphasis has shifted towards the use of multiple
processors. Four different strategies have been
pursued by the computer designers. On the Cray
Y/MP class of systems, a relatively few sophisticated
CPU units tightly connected to each other are used.
On massively parallel computers of the CM-5 class,
several thousand (relatively) simple processors tightly
connected to each other are used. On machines of the
Intel iPSC/860 class, a small number of processors (32
or more) tightly connected to each other are used.
Finally distributed systems, where a collection of
heterogeneous systems connected to each other via
standard Ethemet interface lines are coming of age,
and rely on a combination of software (e.g. Parallel
Virtual Machine interface) and hardware (faster CPUs,
high speed communication links) to achieve increased
throughput.



Inthiswork,theGMRESschemeis consideredasa
candidatefor the accelerationof an iterative time
marching scheme for unsteady 2-D compressible flow
calculations on an Intel iPSCI860 parallel
=Jpercomputer. In the past, researchers have ported a
number of steady applications to this machine. In these
applications, the flow field is divided into a number of
blocks, and each CPU node is tasked with advancing
the flow field by one pseudo-time step. However,
porting a true unsteady flow solver to this machine
Introduces new difficulties. For example, the practice
of lagging boundary conditions at the block
boundaries can create serious phase errors in
unsteady flow simulations, particularly if large
disturbances such as shock waves and strong vortices
move across the block boundaries. Most steady flow
solvers use an explicit time marching scheme, and the
individual blocks (and the CPU nodes) are only loosely
coupled to each other. In unsteady viscous flows,
implicit schemes are commonly used because of their
superior stability characteristics. Unfortunately, implicit
schemes require a tight coupling between the blocks,
and the CPU nodes. Unless an implicit algorithm is
carefully designed, the I/O penalties associated with
the data transfer between the nodes can make an
implicit algorithm unsuitable for parallel implementation.

MATHEMATICAL AND NUMERICAL
FORMULATION

The unsteady, 2-D, compressible ADI code23used in
this study solves the Navier-Stokes equations, given in
curvilinear coordinates as:

qt+ E_+ G_ =S_+T;

(1)

with an implicit scheme similar to that of Steger 2s.
Here, q is the flow properties vector; E and G contain
the information regarding the mass, momentum and
energy fluxes; S and T contain the viscous stress,
heat conduction and viscous work effects. Second or
fourth order central differences are used for the spatial
derivatives, and a first order backward difference is
used for the time dedvative.

An tterative ADI scheme is used to numerically
integrate the Navier-Stokes equations. At each time
step, the following equation is tteratively solved:

[I + _ &_A]n*'.k[I + &'¢_]r"l.k{6¢l} = R

where, R is the residual being driven to zero, given by

R = -&z [(qn+,.k. qn)/At] + _(S- E) + 6_;(T- G)]n+l,k

(2)

and _1 is the change in the flow properties between
s4Jcc_ssive iterations,

Aq . _.1.k.1 . _.l,k

(3)

Also, 'n' refers to the time level, and 'k' to the iteration
level. The time step is given as At, while &¢ is a local
time step used in the iterative process. The matrices A
and C are the Jacobians of the flux vectors E and G,
and are computed using the information at the
previous iteration level 'k'.

Since the left side of Eq. (2) is invertible, this equation
may formally be written as:

qn+l,k.1 = r.(qn.,.k )

(4)

A non-iterative ADI scheme simply means that only one
iteration step is performed at each time level.

Note that the right side of Eq. (2) can be computed by
a variety of methods: finite volume, finite element,
finite difference, etc. The left side ADI matrix may be
replaced" by an LU form, or even a simple diagonal
form. The GMRES formulation does not concern itself
with such details of the implementation, but instead
treats the flow solver as a 'black box' used only to
evaluate Eq. (4).

Of course, the success of the GMRES solver will
depend on the left side matrix chosen. Implicit
formulations such as ADI and LU schemes are known
to perform significantly better than explicit forms2_.

The unsteady GMRES solver attempts to find the
qr_,k that will minimize the equation:

M(qn,.-1.k)., qn+l.k.l . qn+l.k = 0

at each time step.

(5)

In a non-iterative ADI scheme, the time step is
restricted to prevent errors introduced by the

2



linearization of the flux terms and the approximate
factorization of the linear matrix operator from affecting
the unsteady solution. Since the GMRES method is
being used on an iterative time marching scheme, the
time step is now dependent only on the ability of the
discretized equations to follow the physics of the flow.
A reduction in CPU time is achieved if the GMRES
method requires fewer evaluations of the residual R to
arrive at a given time level than the non-iterstive ADI
methodology to arrive at the same time level.

The GMRES solver works by assuming that the error
vector M(q a+l.k) is spanned by a small set of ortho-
normal direction vectors. For two dimensional
compressible flows, there are a total of (imax x kmax x
4) possible orthonormal directions that the correction
vector to the flow variables, _1 may lie in.

The GMRES solver uses the underlying iterative ADI
scheme to choose a small set of orthogonal directions
(a user input, which is usually less than 20). The slope
of the residual in each direction is numerically
computed. From this, a least squares problem is
solved to minimize the magnitude of the 12 norm of the
error vector M(q n÷l,k),

In contrast, the classical iterative ADI scheme given in
equation (2) considers only one direction in each
iteration; each new iteration computes a new direction
which has no relation to the directions that have
already been used. This causes, in many cases, the
iterative process to stall, and no further reduction in the
error vector M(q n÷l.k) is achieved.

Closely following the development given in Ref. 15,
the direction vectors are found as follows:

The initial direction is computed as

dl "M(q "+Lk)

(6)

and normalized as

(7)

To compute the remaining directions (j=1,2 .... J-l),
take

where

n+Lk._bij - (M_ , j),d i)

and

M_;aj) - M(_ + r_:)- M(_)
£

Here, ¢ is taken to be some small number.
it is set to 0.001.

(8)

(9)

(10)

In this work,

dj÷_ is normalized before the nextThe new direction

direction is computed:

(11)

(12)

bj+t,j " Hl_.i ÷i I

and

bj.l,j

After obtaining the components of &q along these
directions, the solution vector is updated using

(13)

J

j-1

where the coefficients aI are chosen to minimize:

3



..,.,+

I- I'
(14)

PARALLEL IMPLEMENTATION

"rhe GMRES code has been extensively evaluated for
a number of unsteady flows in two- and three-
dimensions 23,24.These eadler calculations done were
on vector machines of the Cray Y/MP class, or on
advanced workstations. The thrust of the present
study is to evaluate if the GMRES algorithm performs
well on parallel machines of the Intel iPSC/860 class,
and determine any modifications needed to tune the
algorithm to these machines.

The iPSCI860 is a MIMD machine; the individual
processors work with different subsets of the data
simultaneously, and each processor may
independently execute different instructions at the
same time. Furthermore, the iPSC/860 is a distributed-
memory machine, where each processor has its own
separate memory. In order to obtain information from
another processor, a message-passing routine must
be explicitly coded. Since the message passing
process is a relatively slow sequential process, the
most efficient code will usually have the least number
of messages.

As a first step, a non-iterative 2-D ADI code (that solves
equation (2), but uses only one iteration) was modified
to run on an Intel iPSC/860 machine located at the
NASA Langley Research Center. In order to
accomplish this goal, the computational domain was
divided into a number of blocks or sub-domains as
shown in FKjure 1. As is common with block structured
grid solvers, each sub-domain overlaps its neighbors
by two "ghost" cells. Each processor performs an ADI
step over one or more blocks. The boundary
conditions for the ghost cells are updated by passing
messages at the end of each step.

A number of 2-D steady flow calculations were first
carried out with the non-iterative ADI solver
implemented on the iPSC/860 architecture. The
steady state solutions were identical to the results
obtained on sequential machines. As stated earlier,
this approach of lagging the flow properties at the

block boundaries (ghost cells) works well only for
steady flows.

Iterative Thomas AI0orithm

Since the goal of this work was to solve the unsteady
Navier-Stokas equations in a "-_ fashion, an
iterative solution procedure was implemented. The
bottleneck in such an implementation is inversion the
tridiagonal matrix system in the streamwise (I_-)
direction.

It should be noted that a parallel ADI step is quite
different from that of the sequential version. A
description of the current implementation follows:

First, the order of the sweeps is reversed:

[I + AT0¢C][-I + A'r0_A]{Aq} = {R °÷''_}

(15)

and the _-swsep is performed first.

[l + -_{ Ro''.'}

(16)

Since this sweep requires information only within a
given block, and never requires information across
block boundaries, this matdx inversion was done, in
parallel on all the processors, using the Thomas
algorithm in a manner identical to the sequential
version of the flow solver.

When equation (16) has been solved in all the blocks
m

by all the CPU nodes, the values for Aq are known
throughout the flow field. Next, the streamwise sweep
is performed:

[I + {nq'}

(17)

This sweep, performed using Thomas algorithm,
usually requires information across block boundaries,
because the nodes along the F,- direction in all the
blocks are implicitly coupled. In the iterative approach
we lagged the _q values at the block boundaries by
one iteration, or set these values to zero. This strategy
removes the implicit coupling between the individual
blocks.

4



Wefoundtheaboveapproachto beunsatisfactoryfor
a number of reasons. A large number of iterations were
needed to drive the &q values, and the associated
phase errors to zero. This algorithm required two
message passes per iteration for each processor,
which increases the run time dramatically. Also, the
convergence of the &q values near the block
boundaries was not uniform between iterations.

Block Cyclic Reduction (BCR) Routine

To avoid the difficulties involved in the iterative
Thomas algorithm, a Block Cyclic Reduction (BCR)
routine was next implemented, for solving equation
(17) in the F_-sweep.

While the Thomas algorithm requires the least
operation count to solve the matrix system, it also is an
inherently sequential method (i.e., for each step in the
inversion procedure, information is required from the
step previously performed). Therefore, the Thomas
algorithm is not directly paralletizable.

The Block Cyclic Reduction routine is a more efficient
way of solving the tridiagonal matrix equations. Given a
tridiagonal matrix that is (2%1) x (2"+1), this procedure
directly solves the matrix system as described in Ref.
27.

The BCR routine has three drawbacks. First, the
processors must communicate before every round of
reduction and back-substitution to obtain matrix values
that lie outside its block. These messages are
relatively shod, however. Second, during the end of
the reduction and the beginning of the back-
substitution process when there are few lines left to
compute, several processors wait in idle. It was
anticipated that the savings in computation time
compared to the parallel iterative routine will make up
for the idle time encountered. Third, for best
performance, the BCR routine must have 2n + 1
equations to solve. Thus, the gdd required for this
routine is less flexible than that for the iterative parallel
code.

It should be emphasized that the BCR routine is a
direct solution procedure in this implementation.
There is no need to lag the &q values at the block
boundaries, as required by the iterative Thomas
algorithm described eadier.

_IMRES Implementation

The GMRES routines were finally added to the parallel
iterative ADI code after the ADI code was validated.
When the GMRES algorithm was implemented, a

question arose as to the definition of the residual to be
minimized.

Two ideas were tried. The first idea was a completely
parallel GMRES implementation, where each
processor ran a GMRES routine to minimize the 12
norm of the error vector M for nodes only in its
particular block. When a function evaluation is
required, the processors work in parallel to compute
the residual R and the error vector M in all the blocks.
The GMRES routine on each processor is only
concerned with minimizing the error vector in its own
block. This is equivalent to allowing each direction to
have a different weighting coefficient in each block.

The second idea was a global GMRES implementation.
In this scheme, the processors work as before to
compute the search directions and the residual in its
sub-domain, but at the end of each function
evaluation, the global norm of the error vector M is
computed and used. This is now directly equivalent to
the sequential GMRES code in that a single weighting
coefficient is used for each direction throughout the
flow field.

Initial tests showed that the global GMRES
implementation performed significantly better than the
local GMRES; thus, the global GMRES was used for all
runs. The GMRES algorithm was implemented on both
the Thomas and BCR versions of the code. The
number of search directions were limited to 5 due to
memory limitations.

RESULTS AND DISCUSSIONS

The parallel ADI code was implemented on the NASA
Langley 32 processor Intel iPSC/860 MIMD parallel
supercomputer. Both the iterative Thomas algorithm
and the BCR versions were extensively tested. The
BCR solver was typically four times faster than the
iterative Thomas algorithm. Here we document only
the calculations with the Block Cyclic Reduction
method.

The notation used for the GMRES discussion is as
follows. The notation ' GMRES(5) ' refers to a steady
flow calculation with 5 search directions used at each
step. The notation ' GMRES (5/10) ' refers to an
unsteady flow calculation with 5 search directions used
at each time step; each time step, however, is 10times
that taken by the non-iterative ADI solver.

The steady flow validation case was that of a subsonic
viscous flow about a NACA 0012 airfoil at a 13.4" angle
of attack. The treestream Mach number was 0.301,
and the Reynolds number was 3,950,000. This case
was tested experimentally by McAlister, at. al2e. A C-
grid topology was used, with 259 streamwise points

5



and 41 normal points. The Baldwin-Lomax turbulence
model was used for all viscous calculations.

The non-iterative ADI code was run for 1000 iterations
on 4,8,16, and 32 processors, and the speedup
obtained is shown in Figure 2 and in Table I below. It
can be seen that the speedup is not ideal, but this is
largely due to the low number of points on each
proceesor. In other words, the processors spent a
significant portion of the time passing boundary
condition information from block to block. The I/0 time
associated with the message passing was large, and
comparable to the CPU time for the parallel task of
computing the residual R or the error vector M.

From this point on, all results shown are obtained using
8 processors. All GMRES solutions are obtained using
5 search directions per step.

Results for the steady runs are shown in Figures 3, 4,
and 5. Figure 3 shows the global residual histories for
the ADI solver and the GMRES solver. It should be
noted that it was only possible to use 5 search
directions due to the memory limitations of the
machine; previous tests on a sequential computer
have shown that GMRES provides significant
speedups with more search directions.

Figure 4 shows the lift coefficient history for this run.
Note that the GMRES solver converges to the final lift
coefficient much faster than the non-iterative BCR
solver.

Figure 5 shows the pressure coefficient computed by
both the ADI and GMRES(5) solver compared to the
experimental results of McAlister, et. al. Good
agreement is obtained with experiment, and the
solvers return identical answers, even though the
GMRES solver has stalled at a relatively high residual.
More search directions would have eliminated this
problem.

Next, an unsteady validation case was run. The
problem studied was that of inviscid transonic flow
about a plunging NACA 64-A010 airfoil. The
freestream Mach number is 0.8, and the reduced
frequency is 0.2. The plunging motion is defined by
this equation:

Y, - -M=sin(l°)sin(Qrr) (18)

This is a challenging case for unsteady flow solvers,
because of the formation and motion of strong shock
waves on the upper and lower surfaces. The shock
speed is sensitive to the errors in the discretization,
and errors introduced at the block boundaries will be
expected to adversely affect the solution accuracy.

This case has been studied by many researchers; our
results are compared to those of Steger 2s and
Magnus2e..

The grid used here is a parabolic C-grid, with 259
streamwise and 21 normal grid points. The non-
iterative ADI solver uses a non-dimensional time step
of .01.

The GMRES solutions shown are computed using 5
search directions and 5 and 10 times the ADI time step
(GMRES (5/5) and GMRES (5/10), respectively). Local
time stepping is used as a preconditioner for the
GMRES solver; this improves the convergence
dramatically.

The results shown are for the fourth cycle of oscillation.
Figure 6 shows the lift coefficient histories as a
function of the phase angle. It can be seen that the
ADI and both GMRES solutions agree well with the
earlier studies of Steger and Magnus. Good
agreement between different methods for the lift
coefficient may be deceptive, because the errors (in
shock locations and shock speeds) on the upper and
lower surfaces tend to offset each other. The pitching
moment is much more sensitive to the shock location,
and serves as a more suitable indicator of the solution
accuracy.

Figure 7 shows the moment coefficient histories for
the same case. It is seen that the ADI and GMRES
(5/5) solutions agree well with the earlier studies of
Steger and Magnus, while the moment coefficient for
the GMRES (5/10) run is not close at all. This is due to
the errors in the computed shock speed as a larger
time step is used.

In this study we used a simple preconditioner to
stabilize the calculations. The time pseudo time step
A-E shown in equation (2) was different from the
physical time step At. Of course, the pseudo-step
does not have any effect on the final converged
solutionat a given time step. In some earlier studies on
a sequential computer, the preconditioner was not
used (i.e. &¢ = &It). In these earlier calculations, 10
search directions were necessary to stabilize the
unsteady GMRES procedure (i.e., GMRES (10/5)),
while now 5 are sufficient.

It should be noted that this case is a worst-case
scenario for the GMRES solver. On most problems,
the GMRES solver (both the parallel implementation
and the sequential implementation) can speed up the
solution procedure by a factor of 3, over the baseline
iterative ADI solver. The present problem, with its
moving shocks and nonlinear flow field, is a harsh test
of the GMRES solver.

6



CONCLUSIONS

An existing sequential unsteady 2-D compressible
viscous flow solver was rewritten for implementation on
an Inter iPSC/860 MIMD parallel supercomputer. Two
methods were investigated for the parallel solution of
the tridiagonal block matdces encountered in the ADI
procedure, the Block Cyclic Reduction technique
proved to be four times faster than an iterative Thomas
Idgorithm.

The code was validated for steady and unsteady,,
viscous and inviscid flow cases. A GMRES solution
method was added and validated, and the effect of
preconditioning on the GMRES parallel
implementation was investigated. This proved to have
a very beneficial effect, and halved the number of
search directions odginally required for this problem.

The GMRES method proved to be highlyparallelizable,
requiring only one very short message to be passed
for each search direction. The main shortcomings
encountered were in the parallelization of the
underlying ADI algorithm. Algorithms such as the BCR
algorithm described here, or other procedures that
exploit the parallel architecture more efficiently than
BCR can result in dramatic speedups with the GMRES
solver.

ACKNOWLEDGMENTS

The research reported here was supported by a grant
from the NASA Langley Research Center (Grant No.
NAG-l-1217). Dr. Woodrow Whitlow was the technical
monitor.

REFERENCES

1 Borland, C.J. and Rizzetta, D., "Nonlinear Transonic
Rutter Analysis," AIAA Paper 81-0608-CP, AIAA
Dynamic Specialists Conference, 1981.

2. Rizzetta, D.P. and Bodand, C., "Numerical Solution
of Unsteady Transonic Row over Wings with Viscous-
Inviscid Interaction," AIAA Paper 82-0352, Jan. 1982.

3. Batina, J.T., "Unsteady Transonic Algorithm
Improvements for Realistic Aircraft Applications",
Joumal of Aircraft, Vol. 26, No. 2, Feb. 1989, p. 131-9.

4. Sankar, L.N., Malone, J.B., and Tassa, Y., "An
Implicit Conservative Algorithm for Steady and
Unsteady Three Dimensional Transonic Potential
Rows', AIAA Paper 81-1016-CP, June 1981.

5. Malone, J.B. and Sankar, L.N, "Application of a
Three-Dimensional Steady and Unsteady Full Potential
Method for Transonic Row Computations", AFWAL-
TR-84-3011, Flight Dynamics Laboratory, Wright
Patterson Air Force Base, Dayton, OH, May 1984.

6. Shankar, V., Ide, H., Gorski, J., and Osher, S, "A
Fast, Time-Accurate Unsteady Full Potential Scheme,"
AIAA Paper 85-1512-CP, July 1985.

7. Pulliam, T.H. and Steger, J.L., "Implicit Finite-
Difference Simulations of 3-D Compressible Flow',
AIAA Journal, Vol. 18, Feb. 1980, pp. 159-167.

8. Batina, J.T., "Unsteady Euler Solutions Using
Unstructured Dynamic Meshes," AIAA Paper 89-
0115, Jan. 1989.

9. Sankar, L.N. and Tang, W., "Numerical Solution of
Unsteady Viscous Row Past Rotor Sections," AIAA
Paper 85-0129.

10. Wake, B.E. and Sankar, L.N, "Solutions of the
Navier-Stokas Equations for the Row About a Rotor
Blade', Journal of the American Helicopter Society,
Vol. 34, No. 2, April 1989, pp. 13-23.

11. Rai, M.M, "Navier-Stokes Simulations of Rotor-
Stator Interaction Using Patched and Overlaid Grids,"
AIAA Paper 85-1519-CP, July 1985.

12. Gatlin, B. and Whitfield, D.L., "An Implicit Upwind
Finite Volume Scheme for Solving the Three-
Dimensional Thin-Layer Navier-Stokes Equations,"
AIAA Paper 87-1149-CP, June 1987.

13. Kwon, O.J. and Sankar, L.N., "Viscous Flow
Simulation of a Fighter Aircraft', Journal of Aircraft, Vol.
29, No. 5, SOp-Oct. 1992, pp. 886-891.

14. Saad, Y. and Schultz, M.H, "GMRES: A
Generalized Minimum Residual Algorithm for Solving
Nonsymmetric Linear Systems", SIAM J. Sci. Star.
Comp., Vol. 7, No. 3, 1986, pp.856-869.

15. Wigton, L. B., Yu, N. J., and Young, D. P.,
"GMRES Acceleration of Computational Fluid
Dynamics Codes', AIAA Paper 85-1494-CP, 1985.

16. Venkatakdshnan, V. and Mawiplis, D. J., "Implicit
Solvers for Unstructured Meshes', ICASE Report 91-
40, May 1991.

17. Giannakoglou, K., Chaviaropoulos, P., and
Papailiou, K., "Acceleration of Standard Full-Potential
and Elliptic Euler Solvers, Using Preconditioned

7



GeneralizedMinimalResidualTechniques',ASME
FEDv. 69,PublishedbyASME,NewYork,NY,USA.
pp.45-52.

18. Young,D.P., Melvin,R.G., Bieterman,MB.,
Johnson, F.T., and Samant, S.S., "Global
Convergence of Inexact Newton Methods for
Transonic Flow', International Journal for Numerical
Methods in Fluids, Vol. 11, No. 8, Dec. 1990, pp.
1075-1095.

19. Vuik, C., "Solution of the Discretized
Incompressible Navier-Stokes Equations with the
GMRES Method', Netherlands Mathematical Institute
REPT-91-24, 1991.

20. Adams, L.M., and Ong, E.G., "Comparison of
Preconditioners for GMRES on Parallel Computers',
AMD Symposia Series, Vol. 86. Published by ASME,
New York, NY, USA., pp. 171-186.

21. Qin, X., and Richards, B.E., "a-GMRES: A New
Parallelizable Iterative Solver for Large Sparse Non-
Symmetric Linear Systems Arising from CFD',
International Journal for Numerical Methods in Ruids,
Vol. 15, No. 5, Sep. 15, 1992, pp.113-23.

22. Saad, Y. and Semeraro, B. D. , Application of
Krylov Exponential Propagation to Fluid Dynamics
Equations", AIAA Paper 91-1567-CP, 1991.

23. Hixon, R. and Sankar, L.N., "Application of a
Generalized Minimal Residual Method to 2-D Unsteady
Rows," AIAA Paper 92-0422, Jan. 1992.

24. Hixon, R., Tsung, F.L., and Sankar, L.N., "A
Comparison of Two Methods for Solving 3-D Unsteady
Compressible Flows', AIAA Paper 93-0537, Jan.
1993.

25. Steger, J. L., "Implicit Finite Difference Simulation
of Row about Arbitrary Two-Dimensional Geometries",
AIAA Joumal, Vol. 16, July 1978, p. 679-86.

26. Magnus, R. and Yoshihara, H., "Unsteady
Transonic Row over an Airfoil', AIAA Journal, Vol. 14,
Dec. 1975, pp. 1622-1628.

27. Wake, B.E. and Egolf, T.A., "Implementation of a
Rotary-Wing Navier-Stokes Solver on a Massively
Parallel Computer', AIAA Journal, Vol. 29, No. 1, Jan.
1991, p. 58-67.

28. McAlister, K.W., Pucci, S.L., McCroskey, W.J., and
Carr, L.W., "An Experimental Study of Dynamic Stall
on Advanced Airfoil Sections, Volume 2: Pressure
and Force Data", NASA TM 84245, Sept. 1982.

by
Processor #3

J

Computed by
Processor #4

I

I
Computed by ,,.., by

Processor #2 I Processor # l

.44

Figure 1. Domain Decomposition for Implementation on a Four Processor Parallel
Computer

8



Number of

Processors

CPU time

required for

1000 iterations

CPU time for

ideal speedup

CPU time

required/ideal

CPU time

4 6037 6037 1.0

8 3230 3018.5 1.070

16 1985 1509.25 1.315

32 1463 754.625 1.939

Table 1 Parallel Run Timings for 1000 Iterations

Figure 2:

a)
E

I--

CI.

10 4

1000 -

_Actual

• .............................................................................. ....._ ..........................

i--I

Ideal

1 O0

1 10 100

Number of Proces@ors

Actual Speedup Compared to Ideal for Viscous BCR Solver
41 Grid

using 259 x

9



q

tO

10

tO

.... : .... ! .... ! .... ! ....

i

-'--4..............,'...........1"_-'_ I....
i tT"-'_"-)n

..........._ ! i+............ +........... -+ ............ _ ............: !_-

.... i .... i .... ; . . . • i ....

_ ttm_b (i p_omtNm)

M - 0.301, Re - _950,000)

0.tl

0.1

tC:, •

4.1

.4L15

' ; o ; ; J"...... J • ,,,-,L.____--__.++
, l_a (_4_)l _ .9/ ;
- .......... a 0vs) .... : :..... _ .........,, 1..... ..........

4 .... ;.......... ;--- , --'_. _ ......

_--_ii ' i ! _ "
'-....... "----_ ...... H----.:_-_-

....] .... _ .... i ._._ .... i ......
• I0 IO0 II0 _ ,mr, _

pOunt* mPqP

• IqunolnO NACA f,4-A010 Alrlml (I - v.s; a - v._;

:1 .... , .... ! .... ! .... I ....

I.l ............. ÷ .............. + .............. ÷ .............. ÷ .............
i I

I ''-°_ I
. "L---........._.............."..........1--°._',1 ....

J , _ ..........;.............._............. _...............;..............

o__'.'_...,.----..............÷..............:.:÷............-[..............

, , . . I .... I .... I .... I ....

1000 I_0 _00 40_

Ol_l m (I pllol,m,o_)

dy VtlcOUS Flow about • NACA 0012 Nrlo41 ((z = 15.4,
M = 0.301, Re • $,950,000)

One

{LOSS

0.01

_kOOS

¢. 0

_.01

,,Ik_

.... ' .... ' .... ' .... I .... 1.... I .... "
......_;"::::,"-::....... ii• ",'_t ......

_____......: .....:lit__,.._).,,.,,,o.n.t....... ":1 ..... "(_) [ ......
! _ i , il ..... c,,, O_o) l

.... _."....... ._........ ._..

...... _....... 4......... i.......___ ........_...........:-----.--_ _ i. i _ /

...................._...........:..........,__:;.-- -..
! ! .!..........i...'::._i.........Z..

i

: .... ] .... i .... i .... * .... i .... | ....

I0 tOO _0 30O _ IO0 3SO

7: _ Coelltdent HIMory for _ In_ Flow
_m Plunging NACA $4-A010 Alrloll (M - 0.l; k 0.2)

•I_ - . . i - . . i - . . i - . . i - . . i - . .: : : : : .
: : ! ; i '

I: i ! : ! . _,_0_._111'

"r.......r,,'............i............,."I--_,_ /

:_ .4 i[-...... -_............. ":!.......... -i........... "!........... 41............

• ............... i............_............" ............i ............

_ .... i.._i...;...i ..-'---

•o.4 ..o, o _ o_ o.o o_

Fl_re S: pnmamm _ RwuN for the Caicuiltion of

li.4", M = OJl01, Ro • a,=m_,vwj


